A Complete Characterization of the Complete Intersection-Type Theories

نویسندگان

  • Mariangiola Dezani-Ciancaglini
  • Furio Honsell
  • Fabio Alessi
چکیده

We characterize those intersection-type theories which yield complete intersection-type assignment systems for λ-calculi, with respect to the three canonical set-theoretical semantics for intersectiontypes: the inference semantics, the simple semantics and the F-semantics. These semantics arise by taking as interpretation of types subsets of applicative structures, as interpretation of the intersection constructor, ⋂ , set-theoretic inclusion, and by taking the interpretation of the arrow constructor, →, à la Scott, with respect to either any possible functionality set, or the largest one, or the least one. These results strengthen and generalize significantly all earlier results in the literature, to our knowledge, in at least three respects. First of all the inference semantics had not been considered before. Secondly, the characterizations are all given just in terms of simple closure conditions on the preorder relation , ≤, on the types, rather than on the typing judgments themselves. The task of checking the condition is made therefore considerably more tractable. Lastly, we do not restrict attention just to λ-models, but to arbitrary applicative structures which admit an interpretation function. Thus we allow also for the treatment of models of restricted λ-calculi. Nevertheless the characterizations we give can be tailored just to the case of λ-models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Complete Characterization of Complete Intersection-Type Theories

We characterize those intersection-type theories which yield complete intersection-type assignment systems for λ-calculi, with respect to the three canonical set-theoretical semantics for intersection-types: the inference semantics, the simple semantics and the F-semantics.

متن کامل

Local Cohomology with Respect to a Cohomologically Complete Intersection Pair of Ideals

Let $(R,fm,k)$ be a local Gorenstein ring of dimension $n$. Let $H_{I,J}^i(R)$ be the  local cohomology with respect to a pair of ideals $I,J$ and $c$ be the $inf{i|H_{I,J}^i(R)neq0}$. A pair of ideals $I, J$ is called cohomologically complete intersection if $H_{I,J}^i(R)=0$ for all $ineq c$. It is shown that, when $H_{I,J}^i(R)=0$ for all $ineq c$, (i) a minimal injective resolution of $H_{I,...

متن کامل

Characterization of fuzzy complete normed space and fuzzy b-complete set

The present paper introduces the notion of the complete fuzzy norm on a linear space. And, some relations between the fuzzy completeness and ordinary completeness on a linear space is considered, moreover a new form of fuzzy compact spaces, namely b-compact spaces and b-closed spaces are introduced. Some characterizations of their properties are obtained.

متن کامل

representation theorems of $L-$subsets and $L-$families on complete residuated lattice

In this paper, our purpose is twofold. Firstly, the tensor andresiduum operations on $L-$nested systems are introduced under thecondition of complete residuated lattice. Then we show that$L-$nested systems form a complete residuated lattice, which isprecisely the classical isomorphic object of complete residuatedpower set lattice. Thus the new representation theorem of$L-$subsets on complete re...

متن کامل

The Aluffi Algebra and Linearity Condition

The Aluffi algebra is an algebraic version of characteristic cycles in intersection theory which is an intermediate graded algebra between the symmetric algebra (naive blowup) and the Rees algebra (blowup). Let  R be a commutative Noetherian ring and J ⊂I  ideals of R. We say that J ⊂I  satisfy linearity condition if the Aluffi algebra of I/J is isomorphic with the symmetric algebra. In this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000